Semisimple Hopf actions and factorization through group actions

Deividi Pansera

joint work with

Christian Lomp

2017-06-15

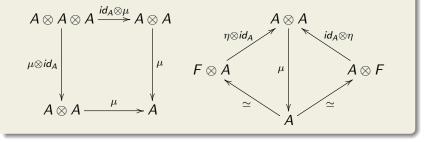
(本部) (本語) (本語)

Algebras

Let F be a field.

Definition

An F-algebra (A, μ , η) is an F-vector space A with linear maps μ and η such that

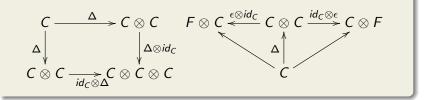


· < @ > < 문 > < 문 >

Coalgebras

Definition

A coalgebra (C, Δ, ϵ) is a *F*-vector space with maps Δ and ϵ , s.t.



・ 同 ト ・ ヨ ト ・ ヨ ト

Group algebras as Hopf algebras

Definition

For a coalgebra (C, Δ, ϵ) and an algebra (A, μ, η) , Hom(C, A) is an *F*-algebra with convolution product:

$$(f * g)(c) = m \circ (f \otimes g) \Delta(c), \quad \forall c \in C, f, g \in \operatorname{Hom}(C, A)$$

Definition

A Hopf algebra H is an F-algebra and F-coalgebra (H, Δ, ϵ) , with Δ and ϵ unital algebra maps, and such that id_H has a convolution inverse S in Hom(H, H).

H = F[G] with $\Delta(g) = g \otimes g$, $\epsilon(g) = 1$, and $S : H \to H$ with $S(g) = g^{-1}$, is a Hopf algebra.

H_8 (Kac-Paljutkin Hopf algebra) $char(F) \neq 2$

 H_8 is the algebra over F generated by x, y, and z subject to the following relations

$$x^{2} = 1, \quad y^{2} = 1, \quad xy = yx$$

 $z^{2} = \frac{1}{2} (1 + x + y - xy), \quad zx = yz, \quad zy = xz.$

 H_8 has a coalgebra structure with

$$\begin{array}{ll} \Delta(x) = x \otimes x, & \epsilon(x) = 1\\ \Delta(y) = y \otimes y, & \epsilon(y) = 1\\ \Delta(z) = \frac{1}{2} \left(1 \otimes 1 + x \otimes 1 + 1 \otimes y - x \otimes y\right) (z \otimes z), & \epsilon(z) = 1. \end{array}$$

 H_8 becomes a Hopf algebra by setting S(x) = x, S(y) = y, and S(z) = z.

・ 同 ト ・ ヨ ト ・ ヨ ト

Hopf actions

Definition

Let H be a Hopf algebra and A be an algebra. A is an H-module algebra (H acts on A) if A is an H-module and

1)
$$h \cdot (ab) = \sum (h_1 \cdot a)(h_2 \cdot b);$$

2) $h \cdot 1_A = \epsilon(h)1_A,$
for all $h \in H$, and $a, b \in A.$

・ロン ・回と ・ヨン・

Factors through a group action

Definition

Let *H* be a Hopf algebra acting on an algebra *A*. If there exists $I \subseteq Ann_H(A)$ such that $H/I \cong F[G]$, the action of *H* on *A* factors through a group action.

H acts *inner faithfully* on *A* if there is no Hopf ideal $0 \neq I \subset Ann_H(A)$.

(4月) イヨト イヨト

Question

Given an algebra A, are there Hopf actions which are not given by group actions?

イロト イヨト イヨト イヨト

Etingof-Walton's Theorem

Theorem (Etingof-Walton 2013, $\bar{F} = F$)

Any action of a semisimple, cosemisimple Hopf algebra on a commutative domain factors through a group action.

・ロン ・回と ・ヨン ・ヨン

Cuadra-Etingof-Walton's Theorem

Corollary (Cuadra-Etingof-Walton 2014, $\bar{F} = F$)

Any action of a semisimple, cosemisimple Hopf algebra H on a division algebra D which is finite over its center Z such that

gcd([D:Z], dimH!) = 1,

factors through a group action.

(4月) (4日) (4日)

Cuadra-Etingof-Walton's Theorem

Corollary (Cuadra-Etingof-Walton 2014, $\bar{F} = F$)

Any action of a semisimple, cosemisimple Hopf algebra H on a division algebra D which is finite over its center Z such that

gcd([D:Z], dimH!) = 1,

factors through a group action.

Theorem (Cuadra-Etingof-Walton 2014, char(F) = 0, $\overline{F} = F$)

Any action of a semisimple Hopf algebra H on the nth Weyl algebra factors through a group action.

・ロン ・回と ・ヨン ・ヨン

Cuadra-Etingof-Walton's Theorem

Corollary (Cuadra-Etingof-Walton 2014, $\bar{F} = F$)

Any action of a semisimple, cosemisimple Hopf algebra H on a division algebra D which is finite over its center Z such that

gcd([D:Z], dimH!) = 1,

factors through a group action.

Theorem (Cuadra-Etingof-Walton 2014, char(F) = 0, $\overline{F} = F$)

Any action of a semisimple Hopf algebra H on the nth Weyl algebra factors through a group action.

・ロン ・回と ・ヨン ・ヨン

Ring of structure constants

Fix a basis $\{b_1, \ldots, b_n\}$ of H, then there exist constants

$$\begin{split} b_i b_j &= \sum \mu_k^{ij} b_k, \qquad \Delta(b_k) = \sum \gamma_{ij}^k b_i \otimes b_j, \qquad S(b_i) = \sum \nu_j^i b_j. \\ t &= \sum \tau_i b_i, \qquad t^* = \sum \tau_i^* b_i^*. \\ \text{Suppose } A &\simeq k \langle x_1, \dots, x_m \rangle / \langle p_1, \dots, p_m \rangle \text{ and } H \text{ action given by} \\ b_i \cdot \overline{x_j} &= \overline{f_{ij}}, \qquad f_{ij} \in k \langle x_1, \dots, x_m \rangle. \end{split}$$

Define the *subring of structure constants* of *F*:

$$\mathsf{R} = \left\langle \mu_k^{ij}, \gamma_{ij}^k, \nu_j^i, au_i, au_i^*, \epsilon(b_i), ext{coef.} p_i, ext{coef.} f_{ij}
ight
angle \subseteq \mathsf{F}.$$

・ロン ・ アン・ キャン・ キャン

Hilbert-Rings

R is domain and a finitely generated \mathbb{Z} -algebra.

R is a *Hilbert ring* (O. Goldman 1951).

- every prime ideal is the intersection of maximal ideals;
- **2** R/\mathfrak{m} is a finite field, for every $\mathfrak{m} \in \operatorname{MaxSpec}(R)$.
- ithere exist enough maximal ideals":
 for every q > 0 there exists X ⊆ MaxSpec(R) with

$$char(R/\mathfrak{m})>q, \qquad orall \mathfrak{m}\in X, \qquad ext{and} \ igcap_{\mathfrak{m}\in X}\mathfrak{m}=0.$$

Reduction mod p

$$H \qquad \rightsquigarrow \qquad H_R := \bigoplus Rb_i \qquad \rightsquigarrow \qquad H_\mathfrak{m} := H_R \otimes_R R/\mathfrak{m}$$

leading to a semisimple, cosemisimple Hopf algebra $H_{\mathfrak{m}}$ over the finite field R/\mathfrak{m} , for all $\mathfrak{m} \in \operatorname{MaxSpec}(R)$

$$A \rightsquigarrow A_R := R\langle x_1, \dots, x_m \rangle / \langle p_1, \dots, p_m \rangle \rightsquigarrow A_{\mathfrak{m}} := A_R \otimes_R R / \mathfrak{m}$$
with $H_{\mathfrak{m}}$ acting on $A_{\mathfrak{m}}$.

・ 同 ト ・ ヨ ト ・ ヨ ト

Hopf actions factor through group actions

Theorem (Lomp-P, 2015, char(F) = 0, $\overline{F} = F$)

Let H be a semisimple Hopf algebra acting on finitely presented algebra A, such that there exists q > 0 and for all $\mathfrak{m} \in \operatorname{MaxSpec}(R)$ with $\operatorname{char}(R/\mathfrak{m}) > q$:

- **Q** $A_{\mathfrak{m}}$ is a Noetherian domain with divison ring of fractions $D_{\mathfrak{m}}$.
- **2** $D_{\mathfrak{m}}$ is finite over its center $C_{\mathfrak{m}}$ and

 $gcd([D_{\mathfrak{m}}: C_{\mathfrak{m}}], dim(H)!) = 1.$

Then the action of H factors through a group action.

・ロン ・回 と ・ ヨン ・ ヨン

Applications

Corollary

The Theorem applies to the following classes of algebras A, because in each case $[D_m : C_m]$ is a power of p if char(R/m) = p (then choose q = dim(H)):

1
$$A = A_n(F);$$

2 $A = U(\mathfrak{g});$
3 $A = F[x_0][x_1, \delta_1][x_2, \delta_2] \cdots [x_m, \delta_m];$

(4月) イヨト イヨト

Question

Given an algebra A, are there semisimple Hopf algebra actions on A which are not group actions?

イロト イヨト イヨト イヨト

Constructing a semisimple Hopf algebra

Example

Let n > 1, $q \in F$ a primitive *n*-th root of unity and R = F[G] for

$$G = \langle x, y | y^n = x^n = 1 \text{ and } xy = yx \rangle.$$

Constructing a semisimple Hopf algebra

Example

Let n > 1, $q \in F$ a primitive *n*-th root of unity and R = F[G] for

$$G = \langle x, y | y^n = x^n = 1 \text{ and } xy = yx \rangle.$$

Let $\sigma \in Aut(R)$ with $\sigma(x) = y$ and $\sigma(y) = x$. Then $A = R[z; \sigma]$ extends the bialgebra structure of R with $\epsilon(z) = 1$ and

$$\Delta(z)=J(z\otimes z) \qquad ext{ and } \qquad J=rac{1}{n}\sum_{j=0}^{n-1}\sum_{i=0}^{n-1}q^{-ij}x^i\otimes y^j.$$

Constructing a semisimple Hopf algebra

Example

Let n > 1, $q \in F$ a primitive *n*-th root of unity and R = F[G] for

$$G = \langle x, y | y^n = x^n = 1 \text{ and } xy = yx \rangle.$$

Let $\sigma \in Aut(R)$ with $\sigma(x) = y$ and $\sigma(y) = x$. Then $A = R[z; \sigma]$ extends the bialgebra structure of R with $\epsilon(z) = 1$ and

$$\Delta(z)=J(z\otimes z) \qquad ext{and} \qquad J=rac{1}{n}\sum_{j=0}^{n-1}\sum_{i=0}^{n-1}q^{-ij}x^i\otimes y^j.$$

Moreover $H_{2n^2} = R[z;\sigma]/\langle z^2 - t \rangle$ is a semisimple Hopf algebra of dimension $2n^2$ where $t = \frac{1}{n} \sum_{j=0}^{n-1} \sum_{i=0}^{n-1} q^{-ij} x^i y^j$ and S(z) = z.

(D) (A) (A) (A) (A)

H_8 as a quotient of an Ore extension

Take
$$n = 2$$
 and $q = -1$. Also
 $G = \mathbb{Z}_2 \times \mathbb{Z}_2 = \langle x, y \mid x^2 = 1 = y^2, xy = yx \rangle$, the element J is given by

$$J=\frac{1}{2}(1\otimes 1+x\otimes 1+1\otimes y-x\otimes y).$$

Then

$$H_8 = R[z;\sigma]/\langle z^2 - t\rangle,$$

where $\frac{1}{2}(1 + x + y - xy)$.

イロト イヨト イヨト イヨト

Constructing an inner faithful action

Let $M = (m_{ij}) \in M_{r \times r}(F^{\times})$ be a square matrix of size r such that $m_{ii} = m_{ij}m_{ji} = 1$. Let $A_M = F_M[u_1, \ldots, u_r]$ be the quantum polynomial algebra, i.e., the associative F-algebra generated by u_1, \ldots, u_r subject to the relations

$$u_i u_j = m_{ij} u_j u_i, \quad 1 \leq i, j \leq r.$$

(4月) (4日) (4日)

Constructing an inner faithful action

Theorem (Lomp-P, 2017)

For any n, r > 1, primitive nth root of unity q, integers $0 \le a_i, b_i \le n - 1$, for $i \in \{1, ..., r\}$, permutation $\tau \in S_r$, and matrix $M = (m_{ij}) \in M_{r \times r}(\mathbb{C})$ such that $m_{ij} = m_{ij}m_{ji} = 1$ and

$$m_{\tau(i)\tau(j)} = q^{a_{\tau(j)}b_{\tau(i)}-a_{\tau(i)}b_{\tau(j)}}m_{ij},$$

for all i, j, there exists an action of H_{2n^2} on the quantum polynomial algebra A_M with

$$x \cdot u_i = q^{a_i} u_i, \quad y \cdot u_i = q^{b_i} u_i, \quad z \cdot u_i = u_{\tau(i)}.$$

イロト イポト イヨト イヨト

Theorem (Lomp-P, 2017)

If for all $i, j \in \{0, ..., n-1\}$, with $(i, j) \neq (0, 0)$, there exists $k \in \{1, ..., r\}$ such that

$$ia_k \not\equiv -jb_k \pmod{n},$$
 (*)

then the action of H_{2n^2} on A_M is inner faithful.

(ロ) (同) (E) (E) (E)

Theorem (Lomp-P, 2017)

If for all $i, j \in \{0, ..., n-1\}$, with $(i, j) \neq (0, 0)$, there exists $k \in \{1, ..., r\}$ such that

$$ia_k \not\equiv -jb_k \pmod{n},$$
 (*)

then the action of H_{2n^2} on A_M is inner faithful.

Condition (*) is satisfied if some 2×2 minor of

$$\left(\begin{array}{ccc}a_1 & a_2 & \cdots & a_r\\b_1 & b_2 & \cdots & b_r\end{array}\right)$$

has an invertible determinant in \mathbb{Z}_n .

(四) (日) (日)

Actions on the Quantum Plane

Let $0 \neq p \in F$ and consider the matrix

$$M = \begin{pmatrix} 1 & p^{-1} \\ p & 1 \end{pmatrix} \in M_{2 \times 2}(F)$$

The quantum plane is the quantum polynomial algebra $A_M = F_M[u, v]$ with two generators.

(本間) (本語) (本語)

An action of H_{2n^2} on $F_p[u, v]$

Consider the Hopf algebras H_{2n^2} . For each *n*, these Hopf algebras act on $A = \mathbb{C}_p[u, v]$ with $p^2 = q$. The action is given by:

$$\begin{aligned} x \cdot u &= qu, & y \cdot u = u, & z \cdot u = v, \\ x \cdot v &= v, & y \cdot v = qv, & z \cdot v = u, \end{aligned}$$

which corresponds to $au = (12) \in S_2$ and the matrix

$$B = \left(\begin{array}{cc}a_1 & a_2\\b_1 & b_2\end{array}\right) = \left(\begin{array}{cc}1 & 0\\0 & 1\end{array}\right) \in M_{2 \times 2}(\mathbb{Z}_2)$$

Since the matrix *B* is invertible in \mathbb{Z}_2 , this action is inner faithful.

A D A A B A A B A A B A

H_8 acting on $\mathbb{C}_p[u, v]$

Theorem (Lomp-P, 2017)

Let $1 \neq p \in \mathbb{C}^{\times}$. If there is a Hopf action of H_8 on the quantum plane $A = \mathbb{C}_p[u, v]$ such that $z \cdot u = v$ and $z \cdot v = u$, then this action is inner faithful and $p^2 = -1$.

H_8 acting on $\mathbb{C}_p[u, v]$

Theorem (Lomp-P, 2017)

Let $1 \neq p \in \mathbb{C}^{\times}$. If there is a Hopf action of H_8 on the quantum plane $A = \mathbb{C}_p[u, v]$ such that $z \cdot u = v$ and $z \cdot v = u$, then this action is inner faithful and $p^2 = -1$.

Example

Let $A = \mathbb{C}_{-1}[u, v]$ be the quantum plane. Then H_8 acts on A as follow:

 $\begin{aligned} x \cdot u &= u, \qquad y \cdot u &= -u, \qquad z \cdot u &= u, \\ x \cdot v &= v, \qquad y \cdot v &= -v, \qquad z \cdot v &= -v. \end{aligned}$

This action is inner faithful.

A D A A B A A B A A B A

3

3

Thank you for your attention.

・ロト ・回ト ・ヨト ・ヨト