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Algebras

Let F be a field.

Definition

An F -algebra (A, µ, η) is an F -vector space A with linear maps µ
and η such that

A⊗ A⊗ A

µ⊗idA

��

idA⊗µ // A⊗ A

µ
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A⊗ A

µ // A

A⊗ A

µ
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F ⊗ A

η⊗idA
::

A⊗ F

idA⊗η
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Coalgebras

Definition

A coalgebra (C ,∆, ε) is a F -vector space with maps ∆ and ε, s.t.

C
∆ //

∆
��

C ⊗ C

∆⊗idC
��

C ⊗ C
idC⊗∆
// C ⊗ C ⊗ C

F ⊗ C C ⊗ C
ε⊗idCoo idC⊗ε // C ⊗ F

C

ee 99

∆

OO
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Group algebras as Hopf algebras

Definition

For a coalgebra (C ,∆, ε) and an algebra (A, µ, η), Hom(C ,A) is
an F -algebra with convolution product:

(f ∗ g)(c) = m ◦ (f ⊗ g)∆(c), ∀c ∈ C , f , g ∈ Hom(C ,A)

Definition

A Hopf algebra H is an F -algebra and F -coalgebra (H,∆, ε), with
∆ and ε unital algebra maps, and such that idH has a convolution
inverse S in Hom(H,H).

H = F [G ] with ∆(g) = g ⊗ g , ε(g) = 1, and S : H → H with
S(g) = g−1, is a Hopf algebra.
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H8 (Kac-Paljutkin Hopf algebra) char(F ) 6= 2

H8 is the algebra over F generated by x , y , and z subject to the
following relations

x2 = 1, y2 = 1, xy = yx

z2 =
1

2
(1 + x + y − xy) , zx = yz , zy = xz .

H8 has a coalgebra structure with

∆(x) = x ⊗ x , ε(x) = 1

∆(y) = y ⊗ y , ε(y) = 1

∆(z) = 1
2 (1⊗ 1 + x ⊗ 1 + 1⊗ y − x ⊗ y) (z ⊗ z), ε(z) = 1.

H8 becomes a Hopf algebra by setting S(x) = x , S(y) = y , and
S(z) = z .
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Hopf actions

Definition

Let H be a Hopf algebra and A be an algebra. A is an H-module
algebra (H acts on A) if A is an H-module and

1) h · (ab) =
∑

(h1 · a)(h2 · b);

2) h · 1A = ε(h)1A,

for all h ∈ H, and a, b ∈ A.
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Factors through a group action

Definition

Let H be a Hopf algebra acting on an algebra A. If there exists
I ⊆ AnnH(A) such that H/I ∼= F [G ], the action of H on A factors
through a group action.

H acts inner faithfully on A if there is no Hopf ideal
0 6= I ⊂ AnnH(A).
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Question

Question

Given an algebra A, are there Hopf actions which are not given by
group actions?
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Etingof-Walton’s Theorem

Theorem (Etingof-Walton 2013, F̄ = F )

Any action of a semisimple, cosemisimple Hopf algebra on a
commutative domain factors through a group action.
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Cuadra-Etingof-Walton’s Theorem

Corollary (Cuadra-Etingof-Walton 2014, F̄ = F )

Any action of a semisimple, cosemisimple Hopf algebra H on a
division algebra D which is finite over its center Z such that

gcd ([D : Z ], dimH!) = 1,

factors through a group action.

Theorem (Cuadra-Etingof-Walton 2014, char(F ) = 0, F̄ = F )

Any action of a semisimple Hopf algebra H on the nth Weyl
algebra factors through a group action.
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Ring of structure constants

Fix a basis {b1, . . . , bn} of H, then there exist constants

bibj =
∑

µijkbk , ∆(bk) =
∑

γkijbi ⊗bj , S(bi ) =
∑

ν ij bj .

t =
∑

τibi , t∗ =
∑

τ∗i b
∗
i .

Suppose A ' k〈x1, . . . , xm〉/〈p1, . . . , pm〉 and H action given by

bi · xj = fij , fij ∈ k〈x1, . . . , xm〉.

Define the subring of structure constants of F :

R =
〈
µijk , γ

k
ij , ν

i
j , τi , τ

∗
i , ε(bi ), coef.pi , coef.fij

〉
⊆ F .
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Hilbert-Rings

R is domain and a finitely generated Z-algebra.

R is a Hilbert ring (O. Goldman 1951).

1 every prime ideal is the intersection of maximal ideals;

2 R/m is a finite field, for every m ∈ MaxSpec(R).

3 ”there exist enough maximal ideals”:
for every q > 0 there exists X ⊆ MaxSpec(R) with

char(R/m) > q, ∀m ∈ X , and
⋂
m∈X

m = 0.
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Reduction mod p

H  HR :=
⊕

Rbi  Hm := HR ⊗R R/m

leading to a semisimple, cosemisimple Hopf algebra Hm over the
finite field R/m, for all m ∈ MaxSpec(R)

A AR := R〈x1, . . . , xm〉/〈p1, . . . , pm〉 Am := AR ⊗R R/m

with Hm acting on Am.
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Hopf actions factor through group actions

Theorem (Lomp-P, 2015, char(F ) = 0, F̄ = F )

Let H be a semisimple Hopf algebra acting on finitely presented
algebra A, such that there exists q > 0 and for all
m ∈ MaxSpec(R) with char(R/m) > q:

1 Am is a Noetherian domain with divison ring of fractions Dm.

2 Dm is finite over its center Cm and

gcd ([Dm : Cm], dim(H)!) = 1.

Then the action of H factors through a group action.
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Applications

Corollary

The Theorem applies to the following classes of algebras A,
because in each case [Dm : Cm] is a power of p if char(R/m) = p
(then choose q = dim(H)):

1 A = An(F );

2 A = U(g);

3 A = F [x0][x1, δ1][x2, δ2] · · · [xm, δm];
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Question

Question

Given an algebra A, are there semisimple Hopf algebra actions on
A which are not group actions?
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Constructing a semisimple Hopf algebra

Example

Let n > 1, q ∈ F a primitive n-th root of unity and R = F [G ] for

G = 〈x , y |yn = xn = 1 and xy = yx〉.

Let σ ∈ Aut(R) with σ(x) = y and σ(y) = x . Then A = R[z ;σ]
extends the bialgebra structure of R with ε(z) = 1 and

∆(z) = J(z ⊗ z) and J =
1

n

n−1∑
j=0

n−1∑
i=0

q−ijx i ⊗ y j .

Moreover H2n2 = R[z ;σ]/〈z2 − t〉 is a semisimple Hopf algebra of
dimension 2n2 where t = 1

n

∑n−1
j=0

∑n−1
i=0 q−ijx iy j and S(z) = z .
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H8 as a quotient of an Ore extension

Take n = 2 and q = −1. Also
G = Z2 × Z2 = 〈x , y | x2 = 1 = y2, xy = yx〉, the element J is
given by

J =
1

2
(1⊗ 1 + x ⊗ 1 + 1⊗ y − x ⊗ y).

Then
H8 = R[z ;σ]/〈z2 − t〉,

where 1
2 (1 + x + y − xy).
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Constructing an inner faithful action

Let M = (mij) ∈ Mr×r (F×) be a square matrix of size r such that
mii = mijmji = 1. Let AM = FM [u1, . . . , ur ] be the quantum
polynomial algebra, i.e., the associative F -algebra generated by
u1, . . . , ur subject to the relations

uiuj = mijujui , 1 ≤ i , j ≤ r .
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Constructing an inner faithful action

Theorem (Lomp-P, 2017)

For any n, r > 1, primitive nth root of unity q, integers
0 ≤ ai , bi ≤ n − 1, for i ∈ {1, . . . , r}, permutation τ ∈ Sr , and
matrix M = (mij) ∈ Mr×r (C) such that mij = mijmji = 1 and

mτ(i)τ(j) = qaτ(j)bτ(i)−aτ(i)bτ(j)mij ,

for all i , j , there exists an action of H2n2 on the quantum
polynomial algebra AM with

x · ui = qaiui , y · ui = qbiui , z · ui = uτ(i).
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Theorem (Lomp-P, 2017)

If for all i , j ∈ {0, . . . , n − 1}, with (i , j) 6= (0, 0), there exists
k ∈ {1, . . . , r} such that

iak 6≡ −jbk(modn), (*)

then the action of H2n2 on AM is inner faithful.

Condition (∗) is satisfied if some 2× 2 minor of(
a1 a2 · · · ar
b1 b2 . . . br

)
has an invertible determinant in Zn.
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Actions on the Quantum Plane

Let 0 6= p ∈ F and consider the matrix

M =

(
1 p−1

p 1

)
∈ M2×2(F )

The quantum plane is the quantum polynomial algebra
AM = FM [u, v ] with two generators.
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An action of H2n2 on Fp[u, v ]

Consider the Hopf algebras H2n2 . For each n, these Hopf algebras
act on A = Cp[u, v ] with p2 = q. The action is given by:

x · u = qu, y · u = u, z · u = v ,

x · v = v , y · v = qv , z · v = u,

which corresponds to τ = (12) ∈ S2 and the matrix

B =

(
a1 a2

b1 b2

)
=

(
1 0
0 1

)
∈ M2×2(Z2)

Since the matrix B is invertible in Z2, this action is inner faithful.
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H8 acting on Cp[u, v ]

Theorem (Lomp-P, 2017)

Let 1 6= p ∈ C×. If there is a Hopf action of H8 on the quantum
plane A = Cp[u, v ] such that z · u = v and z · v = u, then this
action is inner faithful and p2 = −1.

Example

Let A = C−1[u, v ] be the quantum plane. Then H8 acts on A as
follow:

x · u = u, y · u = −u, z · u = u,

x · v = v , y · v = −v , z · v = −v .

This action is inner faithful.
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Thank you

Thank you for your attention.
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